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The modified Burgers equation (MBE)
ov ov G %4
-+ Vz = =€ 7
0X or or
d
«T' has recently been shown by a number of authors to govern the evolution, with range
- ‘\ | y . y . . . g . » . . g
! X, of weakly nonlinear, weakly dissipative transverse waves in several distinct physical
contexts. The only known solutions to the MBE correspond to the steady shock wave
< Y P ; s
> analogous to the well-known Taylor shock wave in a thermoviscous fluid) or to a
> ana‘og Y .
O H similarity form. It can, moreover, be proved that there can exist no Bécklund
= transformation of the MBE onto itself or onto any other parabolic equation, and in
— X 10 1t5et y other p 9 .
O particular, therefore, that no linearizing transformation of Cole-Hopf type can exist.
Attempts to understand the physics underlying the MBE must then, for the moment,
L O P c , 1€ pays yIng :
~ rest on asymptotic studies and direct numerical computation.

Our aim in the present paper is to find asymptotic solutions to the MBE for
small values of the dissipation coefficient €, but covering all values of the range and
phase variables (X, 7) of interest, this being achieved by systematic use of matched
asymptotic expansion techniques. Two specific initial distributions are studied, in
which V(0, 7) is either an N-wave or a sinusoid. The corresponding problems for the
ordinary Burgers equation, generalized to include cylindrical or spherical spreading
effects, were treated in detail by this method elsewhere.
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174 I. P.LEE-BAPTY AND D. G.CRIGHTON

A feature of particular interest in the present paper is that the steady Taylor-type
shock waves, which separate the lossless portions of the wave form in the early stages
after shock: formation, develop an internal singularity at and beyond some finite

- range X, (X, = 10 for N-waves, X, = 9. 601... for the sinusoid) unless the condition
H+2G =0for X > X, is 1mposed on the values H (X); G(X) of V on either side of the
shock. This leads to a ‘refraction’ of the characteristics of the lossless solution as they
pass through a shock at ranges greatcr than X,, and to multiple refractions in the
periodic problem.

The structure of the shock waves is analyscd at all rangcs, ‘and it is shown how, at
large ranges (X = O(e™?) for N-waves, X = O(e™?) for the sinusoid) the shocks thicken
and merge with the lossless portions, leading to a phase of the motion governed by
the full M. This phase is followed at still larger ranges by transition into old-age
decay under linear mechanisms, and the form of the old-age functions is given.
Computations of the wave form for the sinusoidal initial distribution are given that
support the imposition of the criterion H+2G =0 for X > X,. Appendix A gives
a brief derivation of the MBE for the case of transverse clcctromagnetlc waves in a
nonlinear dielectric, and Appendix B provides a sketch of some interesting features
and unresolved difficulties associated with higher-order calculations.

1. INTRODUCTION -

There are many fields of physics, and more particularly of continuum mechanics, in which
dissipation is a significant aspect of wave propagation. Such a field is that of nonlinear acoustics
(with the term extended to cover both longitudinal and transverse waves in solids). Herc, in
contrast to nonlinear dispersive wave theory, which has advanced greatly through the dis-
covery, by Gardnér, Greene, Kruskal and Miura, of the Inverse Scattering Transform for the
exact solution of the Korteweg—de Vries equation, the evolution equations are not exactly
integrable and it is not appropriate to regard the non-integrable ingredients as merely causing
a slow distortion or decay of a localized solution to the exactly integrable part. For dissipative
waves the essential aspect is the production, from smooth initial data, of thin skocks separating
different signal levels, whereas with dispersion localized solitons are produced outside which
the medium is undisturbed.

There is a rich class of model equations describing the weakly nonlinear, weakly dissipative
evolution of waves of acoustic type when such features as relaxation of internal degrees of
freedom or tube-wall attenuation are taken into account in addition to the thermoviscous
dissipation that dominates the high-frequency behaviour of ordinary acoustic media. An
outline of the features of some members of this class is given by Crighton (1979). Inall the cases
considered there, however, the basic (weak) nonlinearity was quadratic, as is abviously required
at lowest order for longitudinal waves in isotropic elastic media, whether fluids or solids. The
present paper deals with a model equation for which the lowest-order nonlinearity is cubic,
and for which the prototypical physical problem may be taken as involving transverse
(shear) waves in an isotropic solid. Many processes are available in different media to resist
the nonlinear deformation of a finite amplitude shear wave. Our assumption is here that the
dominant mechanism has the nature of a viscosity, leadmg ‘to a second derivative in the
evolution equation for a un1d1rect10nal wave. which would then be of the form

oV, L,V 0%,

5}24— Vza—" W (1.1)
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in which all variables are dimensionless, X is a range variable and 7 a retarded time, or linear
phase variable. Certain representations of viscoelastic solid behaviour do indeed lead to an
equation of the form (1.1), as was first shown by Nariboli & Lin (1973) and subsequently by
Teéymur & Suhubi (1978). Nariboli & Lin also show the applicability of (1.1) to the problem
-of magnetohydrodynamic ‘switch-on’ shock waves, whereas a generalized version of (1.1),
including linear terms representing dispersion: and ray-tube area change, was shown by
Gorschkov et al. (1974) to describe the electric field in a nonlinear isotropic dielectric (¥ then
referring either to the axial electric field or the azimuthal magnetic. field in a cylindrically
diverging electromagnetic field). Equation (1.1) has more recently arisen in the discussion by
‘Sugimoto et al. (1982) of torsional waves in a thin viscoelastic rod. Because this model equation
is much less familiar than the customary Burgers equation and its generalizations on the linear
side; a brief derivation of it was thought to be in order here, and is given in Appendix A for
the simplest case, that of electromagnetic waves in a nonlinear dielectric. It is, in any event,
clear from the physical situations referred to above that (1.1) is a canonical nonlinear evolution
equation describing transverse waves in an isotropic dissipative medium, and that the nature
of its solutions is of fundamental interest in wave theory. o IR

There are, further, situations in fluid mechanics in which (1.1) is the appropriate model
equation. Although the coefficient a of quadratic nonlinearity is normally positive, so that only
compression shocks are formed, there are fluids (see the experiments of Borisov ¢t al. (1983) on
Freon-13) in which @ < 0 and expansion shocks are generated, whereas in other fluids « may-
vanish along some curve in a thermodynamic space. In that case, compression and expansion
shocks are both permissible, and indeed both generated, and in the neighbourhood of the curve
on which a = 0 the modified Burgers equation (1.1) governs the motion, as shown by Cramer
& Kluwick (1984). (In all of the above, the coefficient a is defined by the statement that in a
suitable reference frame, with (x, f) space and time coordinates and u an appropriate wave
variable, a right-running lossless simple wave: satisfies Ou/0t+ otu Ou/0x = 0.)
" With regard to terminology, we follow the custom now accepted in dispersive wave theory,
whereby ‘modified’ refers to a change in nonlinearity from VV, to V*¥,, as in the Korteweg-
de Vries and modified Korteweg~de Vries equations, reserving the term ‘generalized’ for
changes, to Burgers equation, for example, arising from linear eﬂ‘ects such as those associated
with geometry or density stratification. - Co

One may immediately ask what the position is with regard to éxact solutions of (1.1). A
travelling-wave solution V = ¢(7—¢, X) is of course obtainable, and will feature prominently
in this paper. A similarity solution V = X ~ g(r/ X% can also be found (Nariboli & Lin 1973)
but has no relevance here: We have not yet been able to find any further exact solutions, despite
attempts to use various ‘direct’ methods of the kinds proposed by Hirota (1976), Rosales
(1978), Matsuno (1984) andothers. We are also not encouraged in the search by a proof
(Nimmo & Crighton 1982) that Burgers equation itself and the linear diffusion equation are
‘the only parabolic equations possessing Bicklund transformations onto themselves or onto any
other parabolic equation; this proof -allowing arbitrary (X, 7) dependénce both in the differ-
ential equations and in the Bicklund transformations.' In the absence, then, both ‘of:a
linearizing transformation and of an auto-Bécklund transformation (that might at least lead to
an exact N-shock solution), we seem forced to use either perturbation methods or numerical
methods to understand the physical mechanisms contained in (1.1): and their balances for
various magnitudes of (V, X, 7). In this paper we study (1.1) analytically with the aid of

12-2
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176 I.P. LEE-BAPTY AND D.G.CRIGHTON

matched asymptotic expansions, backing up our asymptotic analysis with direct finite-
difference calculations of the wave form and numerical integrations of the shock trajectories.

In previous papers (Crighton & Scott 1979 ; Nimmo & Crighton 1986), asymptotic solutions
to various generalized Burgers equations were obtained in this way for small values of the
diffusivity (e in (1.1)) and O(1) values of the other parameters involved, but allowing the
independent variables to take all values of interest, including arbitrarily large values with
respect to €. Thus we were able to analyse fairly fully the entire evolution of a wave that is
fully nonlinear in the limit ¢ - 0 for finite values of (X, 7), and in particular, to follow the wave
into its ‘old age’, in which it decays under linear mechanisms alone. Detailed calculations were
presented for initial distributions V(0, 7) of N-wave and sinusoidal form ; these distributions are
of great interest in themselves (with applications to sonic booms and underwater parametric
arrays, for example) and serve to illustrate most of the effects that seem to arise. In the present
paper, the corresponding programme will be carried out for the modified Burgers equation
(1.1), asymptotic solutions being based on the limit ¢ >0 and detailed results being presented
for N-wave and sinusoidal initial distributions.

The radically different feature of (1.1) (as compared with the ordinary Burgers equation) is
that if one insists that data for the ‘lossless’ solutions just outside shock waves must be
determined directly via characteristics from the initial data, then in general a singularity will
develop at a finite time within the shock wave itself, and there will be no acceptable shock
transition between the desired values of V. We stipulate here that a non-singular shock
transition is mandatory, and examine then whether a consistent picture can be built up. This
is shown to be possible if initial values are used to feed a value V = H(X) via characteristics
to one side of the shock, the value ¥ = G(X) on the other then being determined simply by the
condition H+2G = 0 for X greater than some finite range that is calculated for the cases
considered. The signal value V =G = —3iH is then propagated in a ‘lossless’ fashion along
characteristics ; however, the gradient d7/dX of the characteristic emanating from the initial
data at X = 0 changes from H? to $H* through the shock, so that the shock sends out refracted
characteristics with a factor (}) gradient change. These refracted characteristics are, in fact,
tangential to the shock path, so that, once this new phase of the motion is reached, the shock
is actually the envelope of the family of refracted characteristics. The refracted characteristics
may then impinge upon another shock at which, in general, no acceptable transition can occur
unless the condition H+2G = 0 is again imposed. For the sinusoidal initial distribution one
then has, for moderate finite times, a pattern of multiple refractions, by the periodic shocks, of
characteristics starting from X = 0. This refraction process is investigated in detail for both
initial data considered, and the leading-order solutions for the wave form are obtained in,
essentially, all (X, 7) domains of interest (the exception being a region in which it appears that
nothing short of the full equation (1.1) with all terms comparable is adequate).

Transition to old age is then examined, as the shocks thicken and lose their steady Taylor-
like form (and also diffuse far from the location at which ‘weak shock theory’ (Whitham 1974,
ch. 9) locates them for finite times). At ranges O(¢"%) and O(e™*) for the N-wave and sinusoidal
initial profiles, respectively, the lossless portions and shocks no longer have separate identities,
and the whole wave is described by the full equation (1.1), for which no applicable solution is
known. This prevents us from fully analysing the final decay into old age, but much of the
ultimate structure can nevertheless be obtained.

To substantiate our view of the wave structure for finite times we present, in §4, some finite-
difference calculations of the wave form that support the imposition of the condition
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MODIFIED BURGERS EQUATION 177

H+2G = 0 (although not as decisively as one might hope, because when this condition is
imposed the shock matches algebraically with the lossless flow on one side, rather than
exponentially, which means that it is not clear how to read off the values of H, G accurately
from computed results). The discussion of the shock structure under the condition H+42G = 0
is then continued, in §5, in relation to Lax’s (1973) ‘generalized entropy condition’. Lax’s
work proves that certain inequalities must be satisfied by the shocks amphtudes of a ‘lossless’

problem aU 2
ax s V)=

U,7) = U, (1)

if those are to correspond to the limiting behaviour, as € >0, of the (unique) solution to

aU . yU
. U,(o, 1') U(T)

We show in §5 that thc Lax mequalmes thcmselves do not require the condition H+2G =0
to be identically satisfied, but that that condition is (a) necessary for an acceptable set of
matched asymptotic solutions to our problem and (b) not merely compatible with the Lax
inequalities but actually a limiting form of them.

The paper ends with a brief discussion, and with Appendixes giving the derivation of (1.1)
in one representative case, and with an outline of the calculation of higher-order terms. Not
surprisingly, this raises some difficulties we are unable to resolve, stemming from our inability
to fully analyse the motion in one or two regions of (X, 7) space even to leading order, and the
position is likely to remain unchanged until a general method of solving (1.1) is found.

2. THE N-WAVE INITIAL DISTRIBUTION

The form of modified Burgers equatlon that arises naturally in the type of boundary value
problem considered in Appendix A is

14 w12 av _ az |4
xT m T »
in which V is a dimensionless signal, the time-like variable X is actually a range from some
origin of excitation, and 7 is a phase variable based on the small signal propagation speed. In
this section we study the evolution with range of the N-wave initial profile depicted in figure 1.

(2.1)

2.1. The lossless :.solutz'on

An outer expansion in (X, 7) variables starts with

V=TV,(X,7)+0(1) ‘ (2.2)
as €0, and the ‘lossless solution’ V satisfies
W, 2 OV _ ' ; L
3X+ Vi . 0 o | | (2.3)

with  V(0,7) = g¢(7)
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K A
V=q(1)
l—
. o X=0 -
; "7,02
-1 7
. - *;{,2
-1k

Figure 1. Initial N-wave profile.

and ¢ the initial profile. The characteristics are straight lines, all with positive gradient,
regardless of the form of the initial profile. In terms of a characteristic variable p(X,7) defined
T =p+Xg*(p) N (2.4)

the ksolutioﬁ is >Vo‘=‘ g(p), and may be given in éxplicit form as
0, Inl>1 (Ip>1)
C[HD/XE —1<r<X—1 (p=—1)
(- (1+4Xn)l)/2X, X—1<7<X+1 (—1<p<+1)
C —[r-1)/X], 1<T<X+1 (p=1).

(25)

The solution ¥; defined in this way is depicted in figure 2.

Ay

0

e
v
o

- - -

- T =
ot
G

o

- e

FIGURE 2. Loss‘lessiproﬁ]e of N-wave for X > 0.

2.2. Shock ﬁrmdtion '

When the lossless solution becomes triple valued, a shock discontinuity must be fitted at an
appropriate phase location. A triple-valued solution arises immediately (i.e.at X =0) at7 =1,
so that for X > 0 there is a ‘head shock’ moving into the undisturbed region, implying then
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MODIFIED BURGERS EQUATION 179

that the arc ¥, = —[(1—1)/X]¢for 1 <7 < X+1is completely redundant. The phase location
of the head shock is denoted by 7 = C,, (X ), as in figure 2. One might think that because of the
nature of the initial profile there should be a shock towards the back of the wave, at 7 = C, (X)
say, again cutting out an arc of the lossless wave. However, such a shock would not satisfy the
generalized entropy condition to be discussed in §5 below ; see Lax (1973) for a similar example.

A second or ‘tail’ shock does, however, form behind the head shock at a later stage, where
cumulative nonlinear steepening on the arc for which X—1 <7 < X+1 produces infinite

gradient ,
v, Jor=—1/(1 +4X7)%

of the solution ¥, = (2X)™! [l - (l +4x7)h. This ﬁrst occurs at X =1, 7 = —1, where the value
of I is 1.

2.3. Head-shock structure and dynamics

Denote the value of ¥, just behind the head shock by F (X )3 then from (2.5), shock amphtude

and location are related by ‘
C,= XF*—F (2.6)

with g Cp(0) =1, F(0)=-1.

We find another relation between C, and F by analysing the shock structure with the aid of
a shock variable

Sy = (1=Cu(X))/e
and a shock expans1on of the form (because F= 0(1))
WX, She) = V(XS +ev*(X,S;':) +.. < 2.7)
The equation for V* can be integrated once to SRR
/oSt =} (VE—a) (VE—B) (VE+a+p), (2.8)

where a(X), B(X) are related to the arbltrary functlon of X arlsmg from the mtegrauon, and
to the shock propagation ‘speed’ ' o o

Co(X) = (d7/dX)gnoc
by G(X) =} +af+), (2.9)

this of course being the expected result for shock propagation with signallevels a, £ on either
side of the shock in a medium with cubic nonlinearity (see: Whitham 1974). The matching
conditions to the outer wave are

Ve—>0 as 8->+ oo,
V:—>F(X) as S,’f»—oo,
so that |  a(X)=F(X), BX)=0, (210

and the integration can be completed to yield

V¥ = F/{1+exp BF*(SE—SEIH, (2.11)
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where S,’ro(X ) is a ‘correction due to diffusivity’ to the shock location of weak-shock theory (see
Lighthill 1956; Crighton & Scott 1979). This function is left undetermined by first-order
matching of Vg to ¥,. Equation (2.11) represents the analogue of the steady Taylor (1910)
solution for the structure of a weéak shock propagating into a medium at rest; in it, convection
and diffusion are balanced, and the range variable X enters only parametrically, in F(X) and
S:O(X ).
Equations (2.9) and (2.10) give
Co(X) = §F*(X), (2.12)

and elimination of C,(X) between (2.6) and (2.12) gives a cubic

SXFP°—F*+1=0 (2.13)

for the shock amplitude, of which the relevant solution is

F=i\,[l—2 cos{arccos (24X2—1)}], - 0 < X < 25,

=é[l—2cosh-§{arcosh (24X—1)}], X354 (2.14)

The shock location C,(X) can now be found from (2.6).

These determinations of F(X), C,(X), do not, in fact, retain their validity for all O(1) values
of X, and actually take quite different forms for X > X, = 90, as will shortly be seen. In addition
to this, a complete analysis of the O(1) head shock structure requires determination of the
shock displacement, S:D(X ), due to diffusivity. This can only be achieved through higher-order
matchings (or, possibly, through the judicious use of an integral conservation law, as in
Crighton & Scott 1979), and these matters are all considered in outline in Appendix B, and
in detail by Lee-Bapty (1981).

2.4. Tail-shock structure and dynamics
The tail-shock discontinuity is drawn between the lossless arcs given (from (2.4)) by
7, =—14+XV? on the left,
and T =—V;+XV? on the right,

as in figure 3. Denoting the signal level to the right of the shock by G(X), that on the left by
H(X), and the shock phase location by 7 = C,(X), these give

C,= XH*—1,
| (2.15)
C, = XG*—G,
with starting values C,(}) = —3}, G(3) = H(}) = 1. For the shock structure, an equation of the

form (2.8) again describes the leading order solution, but with S} replacing $¥, and where the

matching conditions _ ‘
Ve->G(X) as Sf->+o0,

Ve—>H(X) as SFf->—o0,
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Y |
,:;J(X)
r=—l+XV°2\ .
~6&X)
Cc(X)l ChX) ’1‘
T=-[6+ o
L I
Ficure 3. Head and tail shocks in lossless wave.
imply that a(X) l=‘G(X ), B(X) = H(X), and hencé that _
C/(X) = ¥G*(X) +G(X) H(X) + HY(X)}. (2.16)

Equations (2.15) and (2.16) form a complete set for the determination (with the stated starting
values) of C,, G and H, and the shock structure is then determined by the implicit integral of
(2.8),

(V:—G)(G+2H) (V:__H)—(zG-&—H) (V: +G+ H)-—(H—G)
= exp{—YH-G) (G+2H) (2G+H) [S:‘—S:(X)]} (2.17)
in which S: (X) is another undetermined shock displacement due to diffusivity.
The integrations to determine G, H and C, are facilitated by the application of Whitham’s

‘equal areas’ rule (Whitham 1974, ch. 2) requiring the shock discontinuity to cut off lobes of
equal area, as shown in figure 3, and expressed analytically in the form

1 1
(H—=G) C,(X) = f radly— f rdl
G H

or (H-G)C,(X) =3—H+3iG*+3 X(H*—G®) (2.18)
after the integrations are performed. Equation (2.18) satisfies the initial conditions, and is
equivalent (after differentiation and elimination of C, with the aid of (2.15)) to (2.16). Use of
(2.15) to eliminate C, and H from (2.18) then gives a quartic in G,

(e-nfpaer Do (8119 6 (2-19)) o

of which the root G = 1 (and hence H = 1) is the trivial solution representing the vertex of
the N-wave over the range 0 < X < } before the tail shock has actually formed. Thus for the
genuine tail shock (X > }) the cubic applies, and has the one real root

G = (3~ (X— )} sinh } arsinh [JX* — §X+ 51/ (X— b1, (2.19)

from which the values of H, C, follow from (2.15).
13 _ Vol. 323. A
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2.5. Breakdown of tqil-sﬁock structure

It might now be thought that the wave structure (in the form of lossless regions separated
by thin steady-state shocks) has now been fully elucidated to leading order for X = O(1), and
that what remains is the study of the transition into old age (as in the programme, for
generalized Burgers equations with quadratic nonlinearity, carried out by Crighton & Scott
(1979)). That is not the case here, nor can it be expected to be the case for any nonlinearity
(V"), with n > 3, and in fact when X exceeds a finite value X, the wave exhibits one of the most
interesting features of this study, in which the whole nature of the outer field is radically
changed, along with the internal structure of the tail shock.

The way, and range, at which this dramatic change takes place can be found by examining
the tail-shock equation (2.8) in the form

OV /08t =3[Vs —G(X)] [V —H(X)] [V5 —I(X)),
where I(X) = —G(X)—H(X), and considering the sketches of figure 4. In figure 45 it can be
seen that, when the roots are such that H > G > I (unbracketed symbols), there is a smooth

(@) - : oy

m : , HX) >
[Gx) (1 '\ \/ [HX)] A

ek
(8) o#/

FiGuRE 4. (a) Sketch of the function (3V5 /08) (V). (b) Sketch of the function V¥(S¥).
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transition from H to G, with negative 0V /0S;. However, if the positions of G and I were
reversed, corresponding to the bracketed symbols, so that H > I > G, there would be no non-
singular shock transition from H to G. Thus if I=—-G—H > G, or H + 2G < 0, there would
cease to be an acceptable shock transition.

The condition for an acceptable (i.e. non-smgular) shock structure is

H+2G20 SRR ’ (2.20)
and is equivalent to the restriction impo's'e:d'by La‘ix’s‘ gcheréliied entropy condition (see §5).
To show that there does in fact exist ‘at least one X such that H+2G = 0, we observe that

G=H=1 when X=1 and that an investigation of the asymptotics of the equations for
small (X—3) and for large X shows that

G=1-3(X-Y+0(X-1?
H=14+0X-)* - asX-}l0,
H~—G~,,(3/X)§ < as X— o0,

which proves the point. Let X; be the first such value of X. The significance of what occurs at
range X, can be apprec1ated more fully from i inspection of the characterlstlcs plot for the lossless
solution, given in figure 5. Write (2. 16) in the form

C/(X)—G:(X) = MH—GC) (H+26), - (2.21)

A .

X

PT .

—GX)

Ficure 5. Characteristics and shock path in (7, X) plane.

“where, on the left, C;(X) is the shock ‘speed’, the gradient of the shock path 7 = C (X ), and

- G*(X) is the gradient of the characteristic emanating from the initial data at phasc T =—G(X).
Then, because H+2G vanishes at X; we see that C,(X,) = G*(X,) and the shock path and
characteristic touch at X,. Beyond X = X, the shock path must remain to the left of this tangent
characteristic (for otherwise characteristics emanating from 7 = —1 initially would be able to
cross the tangent characteristic) and it appears then that for X > X, there is a region (shaded
in figure 5) of lossless dynamics that cannot be reached by characteristics coming directly from
the initial line X = 0. To avoid this loss of information, and to preserve an acceptable shock

13-2
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structure for X > X, the following argument must be used to determine the lossless solution in
the shaded region.
Observe first that the shock path must not only lie to the left of the tangent characteristic

at X,, but must satisfy CLX)—GHX) <0
t o =

for all X > X, (otherwise the lossless solution to the left of the shock would be multivalued).
Second, the requirement that there be a non-singular shock transition between the lossless
signals H, G (with our convention that H > G) implies, from (2.20) and (2.21), that

C(X)—G*(X) >0,
and the two requirements can be simultaneously satisfied if, and only if,
Ci(X) = G*(X) = {H*(X) (2.22)
or H+2G=0

for all X > X,. This means that for X > X, all information to the shock from the right is lost,
so that the second of equations (2.15), C, = XG?—G, no longer applies. All subsequent infor-
mation to the right of the shock originates from the initial data at 7 =—1 and is passed
through the shock in such a way that the signal level on the right, G, is (—1) that, H, on the
left. This signal level (—3H) is then propagated in ‘lossless’ fashion along the characteristics
with dr/dX = (1H?), so that there is a refraction of the characteristics from 7 = —1 when they
meet the shock path beyond X,. The value of d7/dX is multiplied by (3) as the characteristic
passes through the shock, and the signal level carried by the characteristic acquires the factor

—1). Condition (2.22), C/(X) = G*(X) is, moreover, the condition that the refracted
characteristic and the shock path have the same gradient, and therefore the new shock, for
X 2 X,, is the envelope (seen from the right) of the family of refracted charactcnstlcs The
refraction process, and the shock as an envelope, are illustrated in figure 6.

It is also appropriate to emphasize that although we have arrived at the condition
H+2G 2 0 from considerations of the shock structure, the condition can also be simply (and
perhaps preferably) interpreted with respect to the lossless wave operator. Difficulties must
always be encountered (sometimes implying instability, sometimes, as here, involving inde-
terminacy of the lossless solution) unless the shock speed, in the usual physical variables, is
greater than the characteristic velocity ahead of the shock, and less than that behind. For the
present problem this requirement (see Whitham 1974, ch. 3) is that

C/(X)>6

and C, = G* is achieved at X, whereas C; < G? would follow if the value of G for X > X, were
supplied by the initial data. Therefore, considerations of the lossless solution alone, with a shock
discontinuity, imply that C; > G?, whereas C, < G? also remains in force, and so condition
(2.22) follows without consideration of the detailed shock structure.
The tail-shock relations are much simplified for X > X,; we have (together with (2.22))
just :
C(X)=XH*-1,

and C/(X) =1H?, (2.23)
t 4
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with solutions C(X) = —1+d2X},
(2.24)
- H(X)=dXx1.

To determine the integration constant d, return to (2.15) and (2.18) (which hold for X < X)),
eliminating X and C,(X) to give

4H*+ (G—3) H+(G—3) G = 0,
and then setting H = —2G to arrive at
G(G+1}) = 0.

The root G = 0 refers to X = 00, so that ,

oo
-

G(X,) =—% H(X,)= (2.25)

from which it readily follows that
C(X,) =3 X =10, (2.26)
and hence d = }(10)f ~ 0.94855.

Eventually, this change in the tail-shock dynamics affects the head shock, because the
tangential characteristic with dr/dX = G*(X,) eventually intersects the head shock path
7 = C,(X), at X = X, say, beyond which range information to the left of the head shock can
no longer come from the initial data to supply ‘the shock amplitude F(X). Instead, this
information comes along the refracted characteristics sent out by the tail shock; see figure 6.
Thus, for X > X, the cubic equation (2.13) can no longer be used to determine F(X), and what
is needed is the relation between points on the head shock and those on the tail-shock path to
which they are linked by the refracted characteristics. Equivalently, if the characteristic which
leaves the tail shock at (C,(§), £) intersects the head shock at (Cy (%), ), then what is needed
is the function %(§); see figure 6 for a diagram.

To determine this function we have the relation

Flp) =—3H(@)
following from (2.22), the tail-shock condition

Ci (&) = HH*(§),
the head-shock condition Ch(n) = 3F%(9)
and the relation Cuo(n) —Cy(§) = $H*(€) (1—§)
following from the refraction of thc characteristic. The solution for 3(£) subject to 7(X;) = X,
} H(X,) 1
H()  HE) )x,

which simplifies greatly on use of (2.24) to
1= 9§+ (X,—9X,) (€/X,)}.

7 =£+(X,— X)) Hs(X) dX,
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Ny

- -1 -ow 6E G

Ficure 6. Characteristics plot for N-wave.

Now F(X,) = —1H(X,) = —1, and because F must presumably be continuous across X = X, it
follows that (X,, F(X,) = —%) must satisfy the cubic (2.13), from which we have
X, =90=9X,. _ (2.27)

This leads to the very simple expressions

7 =9§,
F(ﬂ) = —3H(£) = —3H(§),
or F(X) =—¢/X3, (2.28)

where ¢, = 1(9)} d ~ 1.0811, and, from (2.12),

Cp(X) = 32Xt —1. (2.29)
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~ These provide the strength and location of the head shock for X > X,, whereas (2.24) provides
the corresponding quantities for the tail shock for X > X,. The lcadmg order lossless solution

between the shocks, for
: 1<_G”( l)X— (X, .«Y+5

is given by -V, =—LH(E),
I | T—C(f) = MH(E) (X—§)
(see figure 6;. Substitution for H(£) and C,(§) gives |

| V=g,

(TH)g +1x =0,

where E—-

and this leads to the explicit representation

ST

R . 4 t_ 4\2 . ) . .
in which | Z= (3d X), cosh {; arcosh [(-ij;—g]} ; (2.30)

Before going on to analyse the transition into old age, we should note two consequences of
the change in shock dynamics that takes place at X = X.
First, the shock amplitude G(X ) on the right has discontinuous gradlent at X, for when
X < X,, (2XG—1) dG/dX = C/(X)—G*(X) and so
lim dG/dX =0,

xix;
whereas for X > X,, dG/dX = —}dH/dX and
‘ lim dG/dX = &;

XX,

Second, the internal shock structure is significantly different for X > X;. Then, the cumber-
some expression (2.17) can be simplified by setting G(X) = —}H(X) to give

= 1H(X) (1—38 tanhy,), (2.31)

where o1 +ez"‘+2y =3HY(X) (SF— S*(X ). : (2.32)

This implicit relation for y, gives rise to an unusual shock structure, correspbnding to the fact
that the cubic in (2.8) now has H(X) asa simple root but —1H(X) as a double root.
For large negative S the lmear term in y, dominates, so that 2yt ~ aH ’S* and hence

. VE~H-3HexpBHSY, . 33)

so that the shock tends exponentially to the outer wave at the uppér end, as would be expected.
However for large positive S; the exponential term dominates, so that here

e
VE~ —iH+ 5, 2.34
0 o+ gex (2.34)
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i.e. at the lower end the shock tends only algebraically to the outer wave. This feature, not
normally associated with Taylor shocks, is significant, because for X < X, the approach to the
outer wave is exponential at both ends, and to accommodate this change in behaviour at the
- lower end of the shock a new local region is required about V=—1H(X).

The discontinuity in dG/d X and the behaviour of the shock solution, which are consequences
of the changed leading order outer solution, generate higher-order problems outlined in
Appendix B. These effects are not particular to the N-wave problem, but arise in any boundary-
value problem from which the new type of shock (i.e. one with signal levels in the ratio 2: —1)
evolves, such as the sinusoidal initial condition problem considered in §3.

The leading-order outer problem has now been solved for X = O(1), and we turn now to the
large X non-uniformities.

2.6. Transition to old age

The asymptotic separation of the wave form into lossless regions separated by thin shocks is
permissible provided three conditions are met. These conditions are (Crighton & Scott 1979)
(i) that the shock thickness must be small compared with the scale of the lossless wave portions;
(ii) that the ‘correction due to diffusivity’ to the shock location, calculated according to ‘ weak-
shock theory’ (Whitham 1974, ch. 9) or its equivalent for higher-order nonlinearity (as.in the
present problem), should be small; and (iii) that the steady Taylor-type shock solution V§
should itself remain valid as a leading-order approximation.

We investigate whether these assumptions continue to be met indefinitely (i.e. for large X)
by the solutions obtained for O(1) values of X. Consider first the head shock. As regards (i),
the ratio of shock thickness to overall scale is

[Vs/@VE/o)]/Co(X) = O(eXh)

with estimates based on (2.11), (2.28) and (2.29). For (ii), the correction S,":O(X ) to the head-
shock location remains undetermined, for reasons explained in Appendix B. To test condition
(iii) we calculate a second term V7 in the shock expansion V= V§+€eV} +o(e); details are
given in the thesis by Lee-Bapty (1981), and we find

eVY/Vy ~ eF'(X)/F*(X)
= 0(eX?)

with the implication that Vg is not a correct leading order approximation when X = O(¢72) or
larger.

For the tail shock, precisely the same estimates can be established in regard to conditions (i)
and (iii), while the correction S;'; (X) required for (ii) again remains undetermined.

It is conceivable that a non-uniformity could arise through violation of condition (ii) for one
or both of the shocks before conditions (i) and (iii) are violated. We know of no instance,
however, in which condition (ii) alone is first violated (see Crighton & Scott 1979 ; Lee-Bapty
1981; Nimmo & Crighton 1986), and we therefore argue that the first non-uniformity in the
X = O(1) picture arises when X = O(€e7?) and involves the whole wave (whereas if (i) were not
violated the non-uniformity associated with (iii) would be confined in the first place to the
shocks alone, as happens in the case of spherical N-waves with quadratic nonlinearity, discussed
by Crighton & Scott (1979)). This suggests scalings for a new region defined by

X=¢tX, V=6V,
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the second of these beihg dictated by the shock amplitudes H(X), F(X), and
=et
T=¢€1T

dictated by the value of 7 = C,(X). Then with ¥ = 7, +0(1) we find that in (X, 7) variables
the motion at leading order is governed by the full modified Burgers equation

AN
AR E (2.35)

Matching conditions are the following; to the lossless wave,

( 0 for 7<O,
(/X for 0<7<d?Xt

lg? (X=X, T=¢érn]={— d{(s d,)[l +(1 +Z‘)*—(2(1 +§7(1'1¥z’))‘z)*]}_%
for 4*Xt <7< 32Xt

Lo for 7> 3*42}?*

3d4X¥ 1 7
where Z= = cosh { 3 arcosh (m)} ;
to the head shock,
lim [d7,(X = e2X,7 = dC,(X) +68H)] = (1 +expg,) 1 F(X) for 7~ 8k2XY,

>0

where = 22{X {8 — lim [X-*S* X)1

X0

and to the tail shock

>0

lim [l (X = e2X,7 = édC,(X) + 1 $})] = }H(X) (1 -3 tanhy,) for 7T~ 4%}

where ¥, satisfies )
1+exp (27,) +27, = XS — lim [(X3S5(X)])

X0

In the absence of any general method of solving (2.35), the function ¥, cannot be found, and
a numerical attack would be formidably difficult in view of the complicated matching con-
ditions. However, we can argue that, as in the corresponding problem with quadratic non-
linearity, the dissipative mechanism will, for X » €2, reduce the amplitude of the whole wave,
so that then the heat conduction equation

oV, /0X = %V, /ort
will apply, which has a dipole solution (required because f t: Vdr = f t: ¢(t)dr = 0)

o frten(-2552)

R

14 Vol. 323. A
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in which ¢, 7, are purely numerical constants. The ultimate decay of the wave is in this way
determined essentially up to a purely numerical multiplicative factor in the amplitude.

Apart from a sketch of the higher-order terms given in Appendix B, this completes our study
of the N-wave problem, and we move next to the case of a sinusoidal initial signal.

3. THE SINUSOIDAL INITIAL ‘DISTRIBUTION

The problem to be studied here i is governed by the modlﬁed Burgers equatlon (a.1) w1th the

initial (boundary) value
V(0,7) = sinT.

We use the condition VX, 7+7) =—V(X,1), (3.1)

initiated in the boundary condition and. preserved by the differential equation, to confine
attention to one half-cycle when convenient. s

3.1. The lossless solution
As in §2 we assume V = ¥, +0(1), so that

1A ‘ov;
aX+ V2—-a——0 I/",(O T) =sin7,

with solution Vo =sinp, 7=p+Xsin®p,

or | ‘ | A =sin{r—X V.

The characteristics are, of course, straight and all of positive gradient, producing the nonlinear
steepening illustrated in figure 7. Multivalued solutions are produced by (3.2) beyond the
range, X = 1, where the derivatives d¥,/0r, 0¥,/0X first become infinite. The characteristic
vanable which produces the infinity at X=1 is p = —in or i, correspondmg to phase
—in+3 or n+3, within the fundamental period. The values of V, are —25, +75
respectlvely ‘
To obtain a single-valued wave form beyond X = 1, shocks must be fitted, and only the one
initially in [0, ] need be considered in view of condition (3.1). Let 7 = C(X) define the shock

A ‘ Cp=pX)
o iy \
' X—l /

—imi| ‘

E / X>1 k
\ t ! CX) T
Wl {c—x 5 )
] =P
I.\ : _ N
SN
A
Ficure 7. Lossless profiles for sinusoidal wave: , X=1; , X > 1. Shocks at 7 = C(X) and

7 = C(X) —m-are shown.
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location, and let p,(X), p,(X) denote the characteristic variables ahead of, and behind the
shock, respectively; see figure 7. Then:the characteristic relation (3.2) glves R i

C(X) p+ Xsin? pl,}
: (3.3)
- O(X) = P2+X sin’ p,,
with initial conditions b
Implementation of the equal areas rule produces a third equatioh, - '
in py ‘ ‘
C(X) (sinpy,—sinp,) = r 7dVy-
sin p,

= (Pz Siﬁl’é "T.COSIPa) "'(171 Sihﬁx + Cosl’t) + %X (-S.i.ng‘[’z ';_ sin_'",‘[;l), - (35)
which can be cast in the form '
2(sin?p; +sinp, sinp, + Sin?ﬁ_z) (1= p2) +3(cosp, —cosp,) (Sinl’t +sing,) =0 (3.6)
with the aid of (3.3). Observe that direct differentiatiott of (3.5) produces the standard relation
Whith
(Whitham 1974) C’(X) = Hsin®p, +sinp, sinp,+sin®p,}
for the shock propagation ‘speed’ in terms of the signal levels on either side of the shock.
Equations (3.3) and (3.6) form a complete set for determination of C(X), p;(X), po(X),
although because of their strong nonlinearity we have only been able to solve these equations
numerxcally The numerical solution of (3.3) and (3.6) is of no particular interest in itself until
wé come to discuss the posslble development of an internal shock slngulanty, asin §2 5, so that
no details of the numerlcal solution will be glven now.

3 2 Tke skock structure

Take a reference frame movmg w1th the shock so that 7 is replaced by S =7— C(X ), and
(2. 1) becomes SR 2 an ‘ '

T . , ‘a5
Then we examine the shock structure in terms of’ X and §* = S/e with

VX, 8% €) = VE(X,$%)+o(1),

V+{V2 C (X)}

and it is found that the solutlon for V: is as for the tail shock in the N-wave problem. Thus
(2.17) applies again, except that §* is written for S and S;(X) (an undetermined shock
dlsplacement due to dlﬂ'uswlty) for S* (X ). Matchmg the solutlon (2 17) to the lossless outer
sol tion 1, gives - x :
olution Fo gives G(X)=sing, HX)=sinp . . . @37
33 " The étnbryo-shqck region |

Before determining the range for which the above shock solution is valid we look at the
‘embryo shock region’ (Crighton & Scott 1979), the transition region in which the shock first
forms before developing its steady Taylor-hke structure. The region is a local one, centred
on

X=1, r=C(1) =i+ V=g 4.

14-2
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It is again appropriate to scale the moving-frame variables (X, §), and (by analysing the
circumstances in which a second term, €V}, of the outer solution becomes comparable with
V,) the required scalings are found to be

V=2(1+€V
sz( 7) .} 58)
S=eS, X=1+4¢2X.
Then an expansion V = ¥,+0(1) gives
oV, o o
—yp =0 3.9
% 0% o 3.9)

so that the ordinary Burgers equation with quadratic nonlinearity governs the process of shock
formation for the cubic nonlinearity of the modified Burgers equation.
The matching conditions are, to the outer lossless wave,

tingg{ua 173()2'= ‘(X:*l),.§=§)}=71-,(1.-—p')» (3.10)

where ¢’ ~ p—3n is given by the cubic

30— (X—1)p—S5=0, JCREY
and to the shock

lim -}g{l +eh7o(X' & ; 1) ,§ =e*s*)} =L-Iv3(X- nt tanh {§} (X—1)ls*} (3.12)

>0 €

for X > 0. Condition (3.12) comes from expansion of the shock relation (2.17) for X—1-0,
and shows that initially the shock takes on the usual antisymmetric ‘tanh’ profile associated
with shocks of the Burgers equation type. _ .

The required solution to (3.9) can be found by use of the Cole—Hopf transformation, and the
way in which the matching conditions are applied has been given by Crighton & Scott (1979).
The result, almost identical to that for the embryo shock region for a sinusoidal initial
disturbance evolving according to the ordinary Burgers equation, is

a (-]
?=71§{1—2eia—§xnf_m

exp (— &g+ 1S +142 %) dq} +o(ed). (3.13)

3.4. Change in wave structure

As in §2, the present combination of lossless arcs governed by (3.2) with matched Taylor-
type shocks whose dynamics and structure were analysed in §3.2 will remain a valid
representation of the wave for X = O(1) unless the condition

H+2G>0 (3.14)

on the outer ﬂow is violated. Now a study of the large X asymptotlcs of (3.3) and (3.6) reveals

that
HX)~—G(X) ~a/X} (a>0)
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so that condition (3.14) is indeed violated for some finite X, X = X, say. By solving (3.3) and
(3.6) numerically we find

X, = 9.6013590, H(X,) = 0.62206017,
G(X,) = —0.31103008, C’(X,) = 0.096739713, (3.15)
C(X,) = 4.3867020 = 1.39633063r.

At X, there is again tangency of the shock path and the characteristic carrying the value
G(X,) from the initial data, and lossless information to the right of the shock appears to be lost
for X > X,. This is resolved, and a non-singular shock transition between H(X) and G(X)
assured, if the arguments of §2 are followed, imposing the condition

H+2G=0 (3.16)

for all X > X, to determine G(X) given H(X). Agam the characteristics to the right of the
shock are tangent to the shock for X > X,. _ N
For X > X,, the shock relations then reduce to

N

H(X) = sinp,
C(X) = pp+ Xsin’p,, C'(X) = }sin® Pz:}

but this set does not, however, determine the shock dynamics for all X > X,. Eventually,
because of the periodicity of the motion, information feeding the left side of the shock (‘left’
here referring either to the wave form illustrated in figure 7 or the characteristic diagram of
figure 8) no longer comes directly via characteristics from the initial line (as it always can do
for the N-wave tail-shock of §2) but emanates from the right side of the shock in the previous
half cycle. Again, for larger X, the information for the shock in the previous half-cycle may itself
also not come immediately from the initial line, but along a characteristic that is refracted
repeatedly on passing through a whole series of shocks, each refraction multiplying the signal
carried by the characteristic by the factor (—3). This multiple refraction process is depicted in
figure 8.

To derive analytic expressions for the outer flow for all X = O(1), first define a set of
X-values {X,}, n > 1, such that the characteristic leaving the right side of a shock path at
range X, intersects the shock path for the next half-cycle (i.e. the one with 7 increased by 7) at
range X, ,,. Similarly define the set {£,}, X,_, < £,_, < X,, by stating that the characteristic
emanating from the shock path at (C(§,_,), £,-,) in the (7, X) plane of figures 8 and 9
intersects the shock path of the next half cycle at (n4-C(£,), £,.). In view of the antisymmetry
condition (3.1), we have the relation

H(gn) = %H(gn-l)) (318)

where H(§,) is the signal magnitude on the left of the shock at X = £,. Then, because H(§,)
is known for X, < £, < X, from the set (3.17), H(X) will be known for all X once g,, can be
related to £,_,, and so eventually to £,.

To achieve this, consider the region, shown in figure 9, between the two shocks given by
7= C(X) and 7 = n+ C(X). The leading-order lossless solution at a general point here can be

(3.17)
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given either in terms of the shock amplitude on the left, or of that on the right. Workmg from

the left gives
V(X T) = _—H(gn—l)y

T=C(,) = iH (Eper) (X—E,0)s ) ' (3.19)
3 C,(gn—l) %Hz(gn-l)y ;

whereas working from the right gives
VO(X) T) = _H(gn)a

n+C(E,) =T = H*(E,) (€.~ X), ) - (3.20)
| Cl(6) = HHE).
Now add the second equations of (3.19) and (3.20) to give
T+ ~Cllnr) =1 (Enr) Ea—Enmt)s  (321)

then differentiate with respéét to§,_, andsubstitute for C’(§,_,) and C(£,) from (3.19) and (3.20)
to arrive at

d : o
i, [dg,, X ln H(gn-l)] (2 §,,_ )= ‘ 0. (3.22)

Alternatively, integrating C’(X) = {H*(X) from £,_, to £, gives .

CE) - C<£n-l>—z L @,

which, subtracted from (3.21), glves the result

GG B )| MEdX=gn (@32
Elther of (3.22) or (3.23) determines £, in terms of £,_;, and hence ultimately in terms of §,.
And because H(§,) is known (numerically), the function H (X) can be built up by using (3 18)
This has been done numerically, with results displayed in figure 10.

Although we cannot determine H(X) explicitly, its asymptotics for large X can be found
Substitution of the Ansatz H ~ aX~# in (3.18), (3.22) and (3 23) revcals that

N _ bxd
H(X)~2[r/(3-2In 2)]i X } (3.24)

_C(X) [n/(3 21n2)] InX+C,

Observe that the form for H(X) is substantlated by the numerical- results; C s a numcrlcal
constant that is not predicted by the asymptotic analysis but found from computanon of C(X )s
H(X) to have-the value —1.7291. :

With these asymptotic forms for H(X) and C(X), gn_l can now be eliminated from (3. 19)

to give the implicit form
V,~U(X,S), —-n<S< +1t,

where § = 7—C(X), with

2 - S Os ' .
U(x,s) = (bU S/} —n<S< } e

— (B*U,(S )/X) 0<S<n
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Ficure 10. Numerically determined values of H(X) and comparison with asymptotic prediction of
equation (3.24).

and where U,(S) and U,(S) are defined by
B*(U,—Inj(U,)—4) =S for 1<U, <4,
¥ (U,—InU,—1)=S§ for 1<U,<4. (3.26)

The constant b? appears in (3.24); b* =n/(3—2In2).

This completes discussion of the outer flow for all X = O(1). As in §2, the shock structure has
a neater, and interesting, form for X > X, ; replacing G(X) by —3H(X) gives, in (2.17),

Vs (X, $*) = 1H(X) (1—3 tanhy),

where 14+€* 42y = 3H*(X) (S* — S5 (X)) (3.27)

and 7= C(X)+eS*. As in §2, V> H exponentially in $* as $*->—o0, Vy->(—HH
algebraically in §* as §* - + 0.

3.5. Transition to old age

To examine the transition into old age we consider the circumstances under which the criteria
(1)—(iii) of §2.6 are violated. In the above section we have given full details of the leading-
order outer solution and of the leading-order shock solution V5 ; Lee-Bapty (1981) provides an
expression for the term €V} in the shock expansion, and Appendix B gives an estimate of the
shock displacement due to diffusivity. By using these various expressions it is easy to show that
all three criteria (i)—(iii) for the validity of the current representation in terms of lossless arcs

and thin steady state shocks, are violated at the same range
X=0(™.
Appropriate rescalings are then _ _
X=2X/e, V=¢PV, (3.28)

the latter following from the behaviour of H(X) as X— co. The phase variable 7 remains
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unscaled, because the non-uniformity at X = O(e™!) involves the whole of the wave. With the
scalings (3.28), the leading-order wave function 170 satisfies the full modified Burgers equation
G/ V2 oV _ A

7% =5 (3.29)

with matching to the lossless wave expressed by

lim [el T{X = eX,7 = C(X)+8}] = U(X,S) for C(X)—m <7<mn+C(X),

>0

where U(X,S) is defined in (3.25, 3.26), and matching to the shock (3.27) expressed by
lim [¢7{X = eX,7 = C(X)+e8*}] = [n/(3—2In2)}} X* (1 -3 tanhy) for 7~ C(X),

>0

where ¥ satisfies
1+e* 425 =[3n/(83—21n2)]{($*/X) — (Spo In X+ So1)}

and S, S, are identified in Appendix B. In the absence of any relevant solutions to (3.29) one
can only observe that eventually, for X > €™, dissipation will reduce the wave amplitude to
such an extent that the linear version of (3.29) will apply. Then a solution satisfying (3.1)
is :
V(X,7)~ 3 A, e ¥ DX gin {(2n41) 7—a,}
n=0

~ Ay sin (T—a,), (3.30)

where A4,, a, are undetermined purely numerical constants. If ¥, could be determined, 4, and
o, could be found by letting X = eX—> o0 in F}. Observe (from (A 4) and (A 5)) that X is
independent of the initial amplitude E, of the signal, as is 7, and therefore that the solution at
range O(¢™") is, from (3.28),

V= —o (3%,) (X, 7). (3.31)
Here we have used the particular model (nonlinear electromagnetic waves) of Appendix A, but
the result is general. It says that the signal E at range X = O(e™?) is independent of the initial
amplitude E,, and so, that the signal has suffered the phenomenon of amplitude saturation,
which is well known for the quadratic nonlinearity of the ordinary Burgers equation (for a
detailed discussion of how this arises also in generalized Burgers equations with quadratic non-
linearity see Nimmo & Crighton (1986)). For a sinusoidal signal and the quadratic Burgers
equation, the result that guarantees amplitude saturation is decay of ¥ as X! at range
€7}, € being then inversely proportional to the initial amplitude. Here, with cubic nonlinearity,
€ varies as E?% but the signal at range ¢ decays only as X 4 (see (3.25)) and there is therefore
again the interesting and significant phenomenon of amplitude saturation. Observe also that
the saturation does not apply merely to the old-age linear decay, where (3.30) and (3.31)
predict, for the physical model of Appendix A,

%o

E~ (g ){A exp [ — 3o cPw?x] sm[ (t—%——)], (3.32)

w

but also to the fully nonlinear phase of the motion in which (8.31) is the solution, with 7, a
solution of the full M (3.29).

15 Vol. 323. A
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4. NUMERICAL RESULTS FOR THE SINUSOIDAL INITIAL DISTRIBUTION

Hcrc an attempt to substantiate the results of the preceding section is made by employing
numerical techniques. We use a finite difference scheme to follow the evolution of V(X, 7) with
X according to (2.1), starting from V(0,7) = sin7. A three-level scheme is used, in which the
derivatives at the centre of a 3 x 3 grid are approximated by using central differences that
involve all nine mesh points. The derivatives 0V/dr and 9*V/dr* are averaged over all three
X-rows, but in the nonlinear term V20V/0r the value of V is taken to be that at the central
point only.

This scheme can be thought of as an extension to the Crank-Nicholson (in which all values
are averaged over two levels and which is unconditionally stable). The introduction of a third
(middle) level and the retention of nonlinearity in that level alone ensure that the resulting
simultaneous equations in the unknowns of the upper level are linear. Solution of this set of
equations is quite simple, involving direct methods to invert a tri-diagonal matrix.

Initially an attempt was made to use the Crank-Nicholson scheme, but the indirect methods
used to solve the resulting nonlinear equations took a long time to converge once a certain
range X was exceeded ; see Mitchell (1969, §§2.19-2.22) for an appralsal of both three-level
and two-level schemes for nonlinear equations. :

Of course, the disadvantage of three-level schemes is that unconditional stability is forfeited.
However, the stability criterion for the three-level scheme can be interpreted as A7 < me, where
AT is the step size in 7, and this just means that the step length must be smaller than the shock
thickness, i.e. that there must be at least one mesh point within the shock. We have taken
A1 = ime, which gives stability, whereas taking A7 = mte was found to lead to instability. The
dependence of stability on AX is more obscure; to be on the safe side we have taken AX as small
as A7, although hindsight suggests that this may have been unnecessarily small despite the fact
that it makes the scheme consistent (formally) in its accuracy. To start the three-level scheme
we need to know the solution on two levels, and for this we applied a Taylor series using
0V (0,7)/0X evaluated from (2.1). v ‘

The major influence on the running time of the program was the size of ¢, and hence of
AX, Ar. Because the aim of the computation was to give credence to the asymptotic theory for
€0, a compromise had to be reached in which € was small enough for the asymptotic behaviour
‘to bite’, but not so small that the computing time became unrealistic. By comparing profiles
of V against 7 at fixed X for successively decreasing values of € we were able to ascertain the
stage at which the wave was tending to a limiting (asymptotic) form. We found that this stage
was reached when € = g35, and that this was not too small a number with which to compute.

The results of the computation are shown in figures 11 and 12. Figure 11 shows the series
of profiles V (X, 7) for X = 0(1) 16, and figure 12 the series for X = 0(10) 370. As principal aim
of the numerical work we wish to substantiate the claim that the shock amplitudes fall into the
2: —1 ratio after a finite distance X;. The amplitude H(X) is well defined in each profile, but
G(X) is, unfortunately, less so, except for X = 2, 3. Two factors contribute to this; first, and
most simple, as V> H(X) the profile turns through an angle greater than ir, whereas when
V> G(X) the profile turns through an angle less than 3n (at least for X < 30); second, the
theory does predict that, for X > X;, the matching to G(X) should only be algebraic, rather
than exponential (cf. §3.4). To gain greater definition in the region about G(X) we would need
to-take a much smaller value of €.
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=0

Ficure 12. Profiles, as in figure 11, for X = 0(10) 370.

Although the profiles do not explicitly show the behaviour predicted by the theory, it can be
seen, by considering the line drawn in figures 11 and 12 through the points with ¥V = —3H(X)
(actually +1H(X) in figure 12, but note the symmetry condition (3.1)) that qualitatively
the theory does indeed give a good representation of the shock amplitudes for X > X, ~ 9.6.
The same qualitative features can be seen in the wave forms given in Gorschkov et al. (1974,
figure 2). In particular, the 2: —1 ratio of shock amplitudes can be surmised to hold, although
one cannot say more as the figures (as published there) contain no scales and no indication of
the range X, and are evidently intended only to provide a qualitative idea of the type of wave
form to be expected.

As X becomes large we see, in ﬁgure 12, how the shocks thicken and decrease in strength,

15-2
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eventually smoothing out into the whole wave as predicted in §3.5. Already at X = 370 we see
the wave tending to the sinusoidal form of the old-age régime, in agreement with the prediction
of §3.5 that the thin shock waves should have disappeared by X = O(e™).

5. RELATION TO LAX’S GENERALIZED ENTROPY CONDITION
Lax (1973) states that the solution to the lossless problem defined by

oUu, o

ax T3 IU) =0, (6.1)
U(0,7) = Uy(7),

can be uniquely defined as the limit as € >0 of the solution, U,, of the dissipative problem

U, 02U,
aX+$f(U€) - e"a_z—’

(5.2)
U, (0,7) = Uyp(7),

and he proves that such a ‘distribution’ solution to (5.1) must satisfy a generalized entropy
condition. This condition states that, for a discontinuous solution of (5.1), with U = G(X) to
the right of the discontinuity and U = H(X) on the left, (i) if G < H, the curve f(U) on [G, H]
must lie below the chord drawn between (G, f(G)) and (H, f(H)) as shown in figure 13a;
whereas (i) if G > H, the curve f(U) on [H,G] must lie above the chord drawn between
(H,f(H)) and (G,f(G)), as shown in figure 135. Analytically, these imply

f(U)—(f(H)_f(G))U+(GﬂH)"Gf(G))so for GSUSH

H—C H—
>0 for HSU<G, (5.3)

A (a) Ar 4)

Sw)-

T, T E &
U~ U~

Ficurke 13 (a) The function f{U) for H > G. (b) The function f{U) for H < G.

A\

and we observe (Whitham 1974, p. 31) that the gradient of the chord is the shock ‘speed’
C’(X). Then the use of Taylor series about the end points G and H yields, from (5.3), the

results F(6) < C'(X) <f(H), (H>O0),
f(H) < C(X) <f(6), (H<G),

which confirm that the shock speed C’(X) must lie between the characteristic velocities, f'(G),
S'(H), of points on the wave at either side of the discontinuity (cf. the discussion of §2
above).
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Example (a). fiU) = LU?, for which (5.2) is the ordinary Burgers equation (nghthlll 1956)
for plane gasdynamic waves. Condition (5.3) for discontinuities is

(U-G)(U-H)<0 for GSU<H
20 for HSUKG,
of which the first is automatically satisfied, whereas the second can neverbe, This implies that
there can be no discontinuities for which H < G, i.e. no rarefaction shocks, only shocks of
compression. Thus the application of (5.3) is equivalent to the familiar assertion (e.g. Lighthill
1956) that, on physical grounds, entropy must increase across a gasdynamic shock.
Example (b). f(U) = 3U?3, for which (5.2) is the modified Burgers equation. We apply the
entropy condition (5.3) to the N-wave shocks discussed in §2. The condition reads
(U-H)(U-G)(U+G+H)<0 for GSU<H
=20 for HSUSKG

or, equivalently, H+2G20 for H>G (5.4)
<0 for H<G. | '

Consider first the head shock. Here G = 0,H=F(X)<0,sothat H < G, H+2G < 0and (54)

is satisfied, in conformity with our finding, in §2, that there were never any difficulties with

Ficure 14. Chords of AU) =} U3 for X E X,.
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either the outer flow or the internal structure in the case of the head shock. Consider second
the possibility, alluded to in §2.2, of a shock at 7 = C,,(X) when X < 1. For this we would need
0 <G < 1and H =0, so that H < G, but H+2G > 0. Condition (5.4) is thus violated and no
such ‘back shock’ can exist.

" Consider finally the tail shock, for which H> G, and (5.4) requires H+2G > 0. This is
one of the conditions imposed in §2 (and §3) to determine the nature of the lossless flow for
X > X,, where it was shown to arise from the need to have a non-singular shock transition
from H to G. However, it was s1multaneously shown that H+2G < 0 is then also needed fora
consistent description of the outer flow, and hence H+ 2G = 0is required for all X > X,. Thus
the limiting case of the Lax theory applies, i.e. at the lower point (G, 3G®) of figure 14 the chord
is tangential to the f(U) curve for all X > X, or, equivalently, the shock speed C’(X) is
equal to the characteristic velocity G = 1H? at the side of the shock where the signal is G(X),
or, in words, the shock is, from the right in the (X, 7) plane of figure 6, the envelope of
the refracted characteristics.

6. DiscussioN

To emphasize how different the waves governed by cubic nonlinearity can be from those for
which the nonlinearity is quadratic, we compare the results derived here for the MBE with those
prevmusly obtained for the well-known Burgers equation. The differences are apparent from
the outset, because in the cubic case the initial profile of the wave, V = ¢(7), is deformed by
stretching in one direction only, whereas the positive and negative parts of the ‘quadratic’
wave move in opposing directions. Thus the waves that are governed by Burgers equation
maintain any antisymmetry present in the initial profile, such as exists in the sine wave case,
so that shocks are likely to form at the zero points and, because the signal levels near there will
be of equal and opposite strength, will be stationary in the profile. None of this is true for waves
governed by the MBE, for which all initial antisymmetry is immediately lost, shocks rarely form
at the zero points, and all shocks are convected in the direction of the general deformation.
(Note for continuous curves ¢(t) that shocks first form on the wave at positions corresponding
to the points of inflexion of ¢""'(r), where n is the degree of nonlinearity.)

 Despite these differences in wave deformation and initial shock position we have shown that
the actual process of shock formation (‘embryo’ shock) under the (cubic) MBE is, to leading
order, governed by the (quadratic) Burgers equation. This is also the case for waves governed
by the higher-order equations (n > 3).

The major discovery of this paper lies, however, in the breakdown of the usual Taylor type
of shock structure and the resulting effects on the outer flow. This breakdown occurs at finite
range X,, when the shocks appear about to develop an internal singularity, and long before
they merge back into the whole wave under the influence of dissipation. It is clear, from the
general form of the equation of a shock between signal levels H and G (H > G) (equation (2.8)

for MBE)
aV: _ 1 n H"—G* * Hr1_grl :
as—*—;{"o ‘[ A=C ]Vo +GH[_T{—_G_]}’ | (6.1)

that this phenomenon can only occur for waves for which the leading-order nonlinearity is at
least cubic, i.e. for which there are more than the two roots Vo = H, G, and hence not waves
for which Burgers equation applies. (In fact it can be shown that only equations of odd
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nonlinearity powers n (i.e. ¥*"¥,) give rise to a shock equation possessing a further (real) root.)
This breakdown of the shock structure occurs for waves evolving from a very large class of
initial profiles; the sine and N-waves are examples for MBE, for which a certain condition on
the signal levels of the outer flow (H+2G > 0 for MBE) for a singularity-free shock passage is
violated. For the general case (n odd) the condition can be interpreted as implying that the
ratio of signal levels ¢ = H/G must never reach the critical value ¢ given by the negative root
of the equation '

@ —ngp+n—1=0. (6.2)

The most significant features of the subsequent wave structure, beyond this breakdown,
which is uniquely determined by imposing the condition that the shock be non-singular, can
be summarized in the following points:

(i) the signal levels on either side of the shock remain locked in the ¢ cr1t1cal ’ rauo (2 —1 for
MBE) with only the overall magnitude of the wave varying;

(ii) information on the outer wave to one side of the shock is no longer passed by charac-
teristics emanating from the initial data, but from characteristics that are refracted through
the shock from the other side (or repeatedly refracted through several shocks as in the case of
periodic waves), the refracted characteristics all being tangential to the new shock on the right,
and;

‘(iii) the shock tends algebralcally to the outer wave at one end, although remaining
exponential at the other. ' ‘

It should be stressed that these features are general to all the waves that produce shocks for
which the critical ratio of signal levels is reached, and will remain evident until, after large
distances, the effects of dissipation cause the shocks to thicken, drift through the proﬁlc lose
their steady-state (‘new’) form and eventually merge back into the whole wave.

Beyond this point (X = O(¢7?) for N-waves, O(e™") for sinusoidal), dissipation causes the
waves to be attenuated so much that nonlinear effects become negligible and, perhaps not
surprisingly, the ultimate old-age forms of the sinusoidal and N-waves governed by the MBE are
found to be very similar to those of the waves governed by Burgers equation. We have shown
that, as in the Burgers case, the wave evolving from the sinusoidal saturates and falls back into
the sinusoidal form, although unlike ‘Burgers waves’ both this and the N-wave dld-ag‘c form
have been swept along from the initial position of the waves.

Before concluding, we note that the asymptotic form of the outer wave, before the final shock
breakdown, evolving from the sinusoid, is derived from (3.18), (3.22) and (3.23) for H and §
independently of the initial profile. Thus, this asymptotic form must hold for all waves evolving
from a periodic initial profile which satisfies the conditions f(7+x) = —f(7) (period 2x) for
which shocks only develop at intervals of . Thus any waves evolving from an initial profile of
this type will take on the asymptotic form and eventually fall into the saturated sinusoidal
mode. The asymptotic form of the N-wave is the exact form for moderate distances and thus,
similarly, will represent the final stages of waves evolving from a class of impulse-like
disturbances, provided these have vanishing integral over 7. Finally, it may be interesting to
consider the wave evolving from a periodic N-wave, more commonly known as the ‘sawtooth
wave’. Under the MBE, this wave, which is the asymptotic form of a wave evolving from the
sinusoidal profile satisfying Burgers equation (see Whitham 1974), will propagate in a way
quite different from either the N-wave or the sinusoidal wave. :
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APPENDIX A. DERIVATION OF THE MODIFIED BURGERS EQUATION FOR
NONLINEAR ELECTROMAGNETIC WAVES

Consider a plane electromagnetic wave
E = (0,E(x,t),0), B=(0,0,B(x,1))
propagating along the x-axis. Maxwell’s equations are

OE_ 9B _OoH_dD

=% 5= (A1)

and the vacuum relation B = yy H is assumed to hold. The wave propagates in an isotropic
dielectric medium in which symmetry demands that the polarization D—¢y £ be an odd
function of E. It is also assumed that all frequencies in the wave are low compared with any
resonance frequencies of the medium. Then the relation D = D(E) may be expanded in a
power series in E with only odd terms, and in a power series in 0/0¢ (cf. Gorschkov ¢t al. 1974;
Landau et al. 1960, ch. 12 and 13); thus

‘ 0*E

D= eE+ocE°+...—ﬂ%—lj—y—a?2——...,

(A2)

in which a may have either sign, as may 7, whereas § represents a damping coefficient and is
non-negative. Taking just the terms explicitly quoted in (A 2), the system (A 1) takes the form
(with ¢® = 1/ep,) ,

OE 10E O2E® O’E O'E

e Rop Mo thkegE ks =0,

in which the last three terms are assumed locally small compared with the first two. Confining
attention to waves propagating in the positive x-direction, we can replace 02/0x%— (1/¢%) 02 /08

by (—2/c) (0/0t) (0/0x+ (1/c) 0/0t), approximately, and then integrate with respect to £ This
gives

0 190 oE? 0*E 0*E
(5,;'*'; &) E+3(apgc) a—t—%(ﬂlto ¢) ?—%(wo ) = =0

3E ) *E O*E
or e T G ) B 555 = (1Bpo0) 3+ (1) 377 (A3)
ifx and ¢’ = t—x/c are taken as independent variables. This is the modified Burgers—Korteweg
de Vries equation, reducing to the modified Burgers equation if the dispersive term with
coefficient 7y is dropped. The natural boundary condition for (A 3) is a signalling one, in which
E(x=0,t) = E(x=0, t’) is prescribed, and E sought for x > 0, all ¢'.
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The above derivation can readily be put on a formal basis as, for example, in Leibovich &
Seebass (1974, ch. 4). Formal multip]c-sca]cs methods were used by Teymur & Suhubi (1978)
and Lee-Bapty (1981) to derive the modified Burgcrs equation for transverse waves in a
viscoelastic solid.

Now define dimensionless variables according to

E=E)V, X=3au,c’®Et(wx/c), T=ot, | (A4)

where E, is a typical magnitude of E(x = 0, ¢), w a typical frequency, and drop the dispersive
term. Then (A 3) gives precisely (2.1), with the identification

€ = fw/3aEL. (A 5)

ArPENDIX B. HIGHER-ORDER TERMS

The motivation for considering the higher-order effects generated by the new type of shock,
in which the signal levels are in the ratio 2:—1, is to consolidate the leading-order theory and
to determine the corrections due to diffusivity to the shock location, i.e. S ,(X) in the N-wave
problem and Sg(X) in the sinusoidal one. It is necessary to know these functions to make a
complete study of the breakdown of the shock structure for large X (see condition (ii), §2.6).
Apart from determining these functions, the higher-order analysis reveals some interesting
features of the new shock, such as the need for a new local ‘intermediate’ region about
V = —1H(X) to enable successful matching from the shock to the lossless wave on the right. It
should be noted, however, that the introduction of this region also generates effects that we
find it difficult to explain completely. For this reason, and also because many of the
expressions involved are very long and complicated, we shall give only a brief outline of the
issues. Details can be found in Lee-Bapty (1981). ‘

Consider the general case of a shock of the new type, with signal level H(X) on the left and
—3H(X) on the right, positioned at 7 = C(X). Formal matching is carried out from left to right
(in 7) across the shock at a point X = £( > X,); see figures 6 and 8. Matching the lossless and
shock solutions on the left implies lossless and shock expansions

V(X,$ <0) = V,+eV,+ole), (B 1a)
V(X,8%) = Vo +eVi+o(e), « (B 15)

for suitable ¥, ¥, Vg, V{. Matching the shock solution to the lossless solution on the right fails
beyond leading order. A new ‘intermediate’ region is needed around ¥V = —3}H(X) in which
an approximation to 0V/0X must balance the nonlinear and diffusive effects dominant in the’
‘inner shock’. This is achieved by the scalmgs S=S8/ed=¢ §*, V=—LH(X)46 V,+0(e),
which give
N 1
T+ H T, = 1 (x) | (B2)
and a solution in terms of Airy functions. Matching to the shock to the left and to the lossless
solution to the right can now be carried out.
The intermediate region and solution now dictate the presence of O(€}) terms in both the
shock expansion and the lossless expansion on both sides of the shock (in addition to the

16 Vol. 323. A
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‘obvious’ terms already quoted in (B 1)). Logarithmic terms are also forced into the expansions
at O(e), and one has to assume the developments

V(X,S) = Vy+€ Vy +eV,+€Ine V,+o(e), (B 30)
V(X s*)_ V*+e Ve eV i+elneVy+o(e), (B 3b)
V(X,8) = V,+e V+e V+e Ine Vy+o(eh), (B 3¢)

in the lossless, shock and intermediate regions, respectively. Solutions for all the coefficient
functions are given in Lee-Bapty (1981).

Now consider the sinusoidal problem of § 3, where the shocks occur at intervals of & and where
the solution at one shock is related to that at the previous one by V(74 %) = — V(7). Because
of this repetition the lossless solution along a characteristic emanating from the right of a shock
at X=2¢, | (point A in figures 9 and 15a) should equate to that along the characteristic
running into the left of the shock of the next half-cycle at X = £, (point B in figures 9 and 15a)
to all orders in e.

When the matching is combined with this requirement, the large X asymptotics of the shock
displacement due to diffusivity can be found (with the aid of (3.24)), namely

S¥(X) ~ Soo X In X+ Sy, X, | (B 4)

where the §;; are complicated purely numerical constants. This substantiates the claim of §3
that a global non-uniformity (with violation of all the assumptions of weak shock theory) takes
place at ranges X = O(e™!). An important discrepancy, however, is that the equivalence of the
lossless solutions at the points A and B mentioned earlier is not maintained in respect of the
terms O(ef) and O(e In€) (see later in this section).

For the N-wave problem a different strategy is called for, in which second-order matching
of the tail shock to the lossless flow on its left is first employed to yield S*(X ), following which
the head-shock displacement S L(X) is to be found from second-order matchmg of the head
shock to the lossless flow on its left This strategy fails, however, because of indeterminacy in
the lossless solution, which is not uniformly valid in the initial development near 7 = —1 and
X =0. In fact, with the scalings V= 0(1), X= O(¢), 7+1 = O(€) the complete modified
Burgers equation holds. Inability to solve the MBE in this initial region leads to indeterminacy
of parts of the lossless solution, and inability to determine the shock displacements.

We have already noted one difficulty associated with the 0(e§) and O(e In¢) terms forced into
the lossless expansions by the new type of shock (with its exponential decay on the left and
algebraic decay on the right, necessitating the introduction on the right of the intermediate
region as a buffer between the shock and lossless regions). Another difficulty is that these terms
cannot in general be present for X < X,, for insertion of the lossless expansion (B 34) into the
modified Burgers equation with an arbitrary smooth condition at X =0 shows that the
expansion must proceed with integral powers of € only. How then do the O(e!) and O(e Ine)
terms get switched on? One possibility is that when the initial condition is not smooth they are
switched on by the ‘boundary’ or ‘initial’ layer, which certainly exists for the N-wave. That
possibility is not open for a smooth initial condition, and the most plausible alternative seems
to be to suggest that the terms are switched on only when a shock has assumed its new form
at X = X,, with subsequent switching on at X = X, (n = 2 for matching between the shocks of
the sinusoidal problem, » = 2 for matching between the tail and head shocks of the N-wave).
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Figure 15. (@) Scaling diagram in the (7, X) plane: — —, tangential characteristic curves I'; ------ , edges of shock
region and of other regions in which dissipative effects are significant; , shock paths. The points A and B
are identified in the text, as are £, X,, X,. (b, ¢, d) Sketches of profiles V(S) or V(') at sections P, P,, P, P,,
P, P, of figure 15a.
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This would imply the existence of some transitional behaviour in horizontal bands about
X = X, in the (7, X) plane, but the scalings and structure here elude us at present.

Finally we remark that the transition from a classical type of shock to the new kind is
governed by the full MBE around X = X,. The scalings are V= 0(1), X—X, = O(e),
T—C(X,) = O(e); see figure 15a—d. From this region the horizontal bands across which certain
terms of the lossless expansion are discontinuous must presumably emanate. At X, there is also
a discontinuity in dG/dX, and a consequent discontinuity in 0¥;,/0X across the first tangential
characteristic I". This characteristic marks the dividing line between information coming
directly from the initial data, and that passing along refracted characteristics through the
shock. To alleviate the discontinuity in 0V;/0 X there must be significantly greater dissipative
activity in a narrow region around I" and running the whole length of I". This is expressed
analytically by the scalings

T =67, V=G(X,)+eV,+0()
and the ordinary Burgers equation
' o7, ) AR A

7'(7, X) = 0 being the equation of I". Although the matching conditions above and below I” are
known, together with the general solution for ¥, a unique solution for ¥, cannot be found
because of insufficient knowledge of the full MBE region at X;. None the less, (B 5) is interesting
as showing how the new type of shock leads to enhanced dissipative activity far from the
shocks.

Failure to resolve these difficulties associated with higher-order terms is by no means
~ uncommon in nonlinear problems. We believe this in no way undermines the credibility of our
proposals for the leading-order structure, which are internally consistent, and substantiated by
the numerical results of §4. We can see no way of improving upon the higher-order description
sketched here until general exact solutions of the MBE become available, and of this there is
absolutely no hint in any current work in nonlinear-wave theory.
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